Hausarbeiten logo
Shop
Shop
Tutorials
En De
Shop
Tutorials
  • How to find your topic
  • How to research effectively
  • How to structure an academic paper
  • How to cite correctly
  • How to format in Word
Trends
FAQ
Go to shop › Technology

Methoden in der Bionik

Wellenwiderstandskoeffizienten aus kubischen Ersatzfunktionen

Title: Methoden in der Bionik

Scientific Essay , 2014 , 22 Pages

Autor:in: Dipl.-Ing. Michael Dienst (Author)

Technology

Excerpt & Details   Look inside the ebook
  • eBook
     Free Download! (PDF)
Summary Excerpt Details

Eine Kenngröße des Wechselwirkungsgeschehens des halbtauchenden Strömungskörpers im Strömungsfeld ist der Wellenwiderstand, der in einem reichlich komplexem Zusammenhang steht mit geometrischen Parametern, etwa der Geometrie der (Stör-) Kontur an der Phasengrenze, energetischen Größen wie der theoretischen Wellenausbreitungs- und der tatsächlichen Strömungskörpergeschwindigkeit und anderen Parametern. Der nachstehende Aufsatz führt auf eine Darstellung des Wellenwiderstandskoeffizienten als Funktion der Froudezahl in einer Ersatzfunktion (Polynom 3ten Grades) die bestimmte Gütekriterien erfüllt und auch für numerische Implementationen geeignet ist.

Excerpt


D
t
&
Z
h
t
/
m
^
,
d
&
Z
t
W
&
t
&
>
^
^
s
'
E
<
<
^
<
&
d
d
t
^
^
^
^
>
'
W
m
>
<
W
,
m
Z
W
<
t
^
^
t
W
'
^
<
W
'
t
^
W
&
t
W
W
W
t
D
&
d
/ >
>
&
t
,
>
t
&
&
t>>
&
W
'
'
/
^
'
&
W
'
^
W
^
/
^
&
W
^
^
s
/
:
^
:
<
'
^
/
<
t
D
W
E
^
z
^
/
:
^
'
Z
&
D
^
^
1

D
t
&
Z
h
>
^
<
'
D
>
<
<
^
E
>
^
^
^
'
:
d
<
W
<
W
^
W
^
<
E
d
/
^
&
d
^
^
^
W
<
d
^
d
^
^
^
<
W
d
W
^
^
D ^
^
E
t
^
^
/
W
d
d
^
^
^
^
^
^
<
d
W
^
^
^
^
^
^
,
&
'
^
2

D
t
&
Z
h
'
&
&
&
D
^
&
'
'
<
<
W
<
<
<
^
'
^
/
>
<
^
,
K
3

D
t
&
Z
h
^
t
W
t
'
'
,
&
^
W
^
'
^
^
W
Z
W
t
Z
t
Z
Z
K
&
Z
&
t
Z
/
/
'
Z Z
W
= Z
t
Z
&
Z
K
Z
/
W
W
s
m
t
'
W
^
,
W
s
E
^
E
^
'
>
D
'
^
'
>
>
>
d
t
>
d
D
D
&
>
s
s
>
'
> d
t
> d
> d
& > Z
E
<
>
t
D > d
t
E
:
D > d
W
E
t
>
D > d
D >
W
Z
t
t
t
t
Z
t
>
^
'
>
>
t
^
Z
&
&
h
<
K
&
Z
&
s
4

D
t
&
Z
h
t
<
/
<
<
,
'
^
s
s
Z
K
t
Z
<
K
Z
K
t
t
^
Z
K
/
<
<
,
'
s
D
K
^
Z
/
/
t
Y
/
t
Z
/
>
t
Y
Z
'
d
>
^
'
d
W
W
t
Z
t
>
> d
&
Z
&
s
>
> d
Z
Z
K
>
> d
/
Z
/
>
d
E
t
<
W
s
^
z.B. viskoser Druckwiderstandanteile, Einfluss der vom Tankrand
reflektierten Wellen, usw.).
t
^
<
^
>
>
Z
Z
Z
&
Z
&
t
Z
/
/
'
<
Y
>
>
E
>
/
&
Z
&
E
Z
&
/
Z
Z
K
E
Z
K
/
t
Z
t
E
Z
t
t
/
t
Z
/
E
Z
/
=
/
/
t
,
Z
E
Z
Z
t
Z
&
Z
K
Z
/
Z
K
^
Z
Z
K
^
=
Z
Z
K
^
=
t
/
=
O
Z
5

D
t
&
Z
h
&
^
s
'
s
&
^
/ &
^
t
t
^
t
^
t
<
·
'
t
&
· Y
<
&
t
t
t
d
>
<
d
E
<
t
t
t
&
W
P
t
t
'
&
&
t
t
^
s
^
^
^
t
d
K
D
^
s
&
s
^
t
&
^
W
&
&
,
&
s
^
/ &
D
t
D
^
W
^
^
s
>
t
t
&
t
W
<
D
^
'
'
t
d
<
>
<
<
>
:
E
E
>
^
/
W
t
&
E
D
^
^
^
&
'
,
6

D
t
&
Z
h
t
^
>
,
t
> /2). &
s
'
^
t
>
&
>
&
&
>
&
&
W
s
,
t
^
^
W
'
Z
,
t
^
>
t
^
t
t
^
Y
W
&
&
^
t
'
W
D
t
t
K
t
&
^
m
D
&
&
t
&
^
&
&
t
Y
W
t
&
&
t
t
&
&
,
t
,
&
d
,
/
t
<
t
&
&
^
'
&
/
&
D
^
^
t
^
t
D
t
^
'
^
7

D
t
&
Z
h
W
W
'
D
^
t
t
&
^
>
D
^
^
'
>
&
: , D
&
>
^
t
t
D
/
'
^
/ s
E
^
t
&
Z
t
Z
d
s
W
t
Z
D
d
,
W
^
>
^
D
E
^
'
D
D
/
'
^
D
&
&
m
D
& &
&
s
&
D
&
t
t
^
^
s
<
t
&
&
^
D
s
^
W
&
<
^
d
'
:
,
D
K
&
W
D
h
D
d
W
D
&^ t
&^ &
'
&
^
'
, W
'
d
t
h
Z
h Z
^ '
^
K D
/
/
K s
^
, &
K t
Z
d
^
W
'
^ E
^
t
d
^
E
Z
8

D
t
&
Z
h
<
<
W
^
/
/
&
^
t
t
t
^
d
E
'
t
t
t
&
&
&
t
D
^
/
^
,
,
W
:
&
D
/
K
,
W
W
^
/
K
&
^
&
>
&
&
Y
&
^
W
Z
<
s
'
<
t
t
t
&
&
'
9

D
t
&
Z
h
W
'
t
t
&
&
&
D
&
&
D
Y
Z
/
YZ
Z
D
:
>
/ ,
d
t
^
/
^
W
E
z
E
t E
>
h
'
t
Z
^
t
>
D
'
&
s
^
Z
s
E
/
^
s
^
Z
E
^
&
D
>
d
D
,
t s
^
K
/
s/ d
^
s/
d
t
^
d
/
&
t
^
&
> ,
,
h
W
D
D
Z
&
&
'Z/E s
'
, D
D
W
D
'Z/E s
D
h
,
D
^
s
Z
^
E
z
&
&
Z
^
s
&
&
D /
h
W
&
&
D
,
E
z
>
W
d
^
'
W
'>/d
10

D
t
&
Z
h
'
'
D
Z
,
E
'
^ '
^
K D
/
/
K s
^
, &
K t
Z
E
^
t
d
Z
'
'
,
^
'
'
>
d
^
W
E
D
s
'
'
t
<
s
t <
&
D
,
,
^
s
^
,
,
: ^
W
'
>
D
<
:
<
W
>
^
^
h
W
>
>
:
>
' d
D &
s
D
/ ^
^
^
D
D
E
Z
s
&
E
E
t
s
s
E
E
t
'
/
E
^
s
,
E
z
E
E
t
<
^
s
W
W
'
t <
,
E
z
>
W
d
^
W
W
t
^
t
Z
Z
/
&
,
s
^
^
^
W ^
, : ^
>
^
E
,
/^E
^
^
^
^
:
^
Z
d
d
t
K '
&
>
h
W
E
K
d
d
t
K '
&
/^E
d
d
D
&
^
/
^
t
^
^
t
s
, ,
:
D
^
<
s
d
d
D
11

D
t
&
Z
h
^
^
^
: ^
Z
&Z
t
'
t
&
12

D
t
&
Z
h
^
^
^
: ^
Z
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
d
d
W
D
&
t &
W
D
t /
&
/
W
&
t
&
&
&
t
&
&
&
&
&
t
&
&
&
&
&
t
&
&
&
&
&
t
&
&
13

D
t
&
Z
h
'
'
D
14

D
t
&
Z
h
Z
Dd,K &KZ >h> d/E' ^,/W Z^/^d E KDWKEEd^
h^/E' d,KZd/ > Z t/E'
'
^
E
^
K D
/
/
K s
^
,
&
K t
Z
^ '
d
^
'
^ E
^
t
d
^
E
Z
'
^
D
/
D
^
^
&
W
D
Z
t z
, t
D
h
'
z
t
:KD
t
K d
Kd
Z
^
Z
Z
15

D
t
&
Z
h
Z
Z
t
Z
d
^
' W t
E
' t
t
Z
d
W
^
d,Z /DE^/KE > >/E Z E >z^/^ K& ^d z ^,/W DKd/KE
/E W t dZ
d,^/^ ^hD/dd &KZ d, 'Z K& KdKZ K& W,/>K^KW,z
:K :K, EE^ D Z/ Z
&
d
d E
D
&
E
&
,
z
Z
K
:
W
K
h^ '
&
'
>
'
^
^
s
^
^
s
<
t
&
D
^
:
16

D
t
&
Z
h
W
:
<
t
/
/d
D
/
>
,
d
h
,
,
/^E
W
>
DRAG ON A SHIP AND MICHELL'S INTEGRAL
Ernie Tuck
_
, & Leo Lazauskas
_
_
School of Mathematical Sciences, The University of Adelaide,
South Australia, 5005, Australia
The Neumann-Michell theory of ship waves
Francis Noblesse
1
, Fuxin Huang
2
, Chi Yang
2
t
Z
t
t & d W
'
:
d
&
/ W
^
E
,
Z
/
E
&
' '
D ,
z
^
: &
D
17

D
t
&
Z
h
' '
D
> z
E
&
: &
D
&
'
E
: &
D
:,
d
: &
D
D
:,
d
W
D
,
,
W
^
,
<
&
,
E
&
: ^
Z
t
t^
^
d
/
E
t
'W
D
d
D
Z
t
'W
^
^
d
h
,
,
t
:s
d
D
z
Zt
^
: ^
Z
^
Z'
W
: &
D
d
K >
>
D
/ /d D
^
,
>:
Z
: ^
Z
18

D
t
&
Z
h
E
&
' < ,z z
d
: D
E
&
' z
< ,z Y
W
: ^
Z
>
:^ D
:< K
: ^
E
^
^
^
, z
>
^
E
^
d
Z
W
^ ,
E
&
,
K
Z
z
^
K >
Z E
&
,
^
d
Z
d
K >
>
h
D
d h
z
E
&
/ : K
W
Z
d
: ^
Z
'
W s
W <
:D
d
/ ^
W
&
K
: ^
Z
>:
Z&
E
<
: ^
Z
< '
dW W
'
D /
/
/
D
D
/D D/
d
19

D
t
&
Z
h
'
W
'
:W
E
E
<
/ W
/
E
^
,
d
d
E
<
/ W
t d
E
^
Z
D
D^
t
W
t d
E
^
Z
D
d
t > z >
E
E
<
/ W
t d
E
^
Z
t
^
t
Z
D
::D
W
h
ZE
::D W
t'
W
E
<
W
Z /
E
::D W
t'
W
Z ^ >
^
>:
Z&
E
E
<
: ^
Z
^
d
:
E
<
/
/
t
t
t
&
t
,
D
D
'W
E
<
W
h
20

D
t
&
Z
h
>
^
E
<
/
/
t
t
t
&
W
E
^
W
K
: &
D
Z
,
W
h
d
s
W
,
K
^
W
/ : E
D
&
E
&
' ,
& z
W
: D
E
& z
: D
E
& d
'
: ^
Z
E
&
'
: D
E
& z
'
^
d
Z
z
>
Z E
&
'
/ : K
W
E
&
^
d
Z
E
&
' ,
& z
^
/
/
t
t
t
&
'
z
< ,z
' E
&
d E
<
E
D
21

D
t
&
Z
h
/ '
^
<
W
/
D
D
s
D
/
K
Z
D
d
d
&
>
z
< ,z E
&
/
/
&
^ d
^
< ,z z
>
Z E
&
/
/
^
K
W
s
z
< ,z >
Z E
&
W
/ W
'
D
K
h<
< ,: z
< ,z
,,
,
/
^
K
W
K
:
< ,z z
< ,: E
&
/ W
'
D
K
/
d
< ,z z
E
&
,
&
/ W
'
D
K
K
< ,z z
< ,:
,,
/ W
^
E
,
W
< ,z :
^ z
E
&
,
/
/
^
K
W
D
h^
22

Excerpt out of 22 pages  - scroll top
  • eBook
     Free Download! (PDF)

Details

Title
Methoden in der Bionik
Subtitle
Wellenwiderstandskoeffizienten aus kubischen Ersatzfunktionen
College
University of Applied Sciences - Beuth  (Bionic Research Unit Berlin)
Course
Bionik
Author
Dipl.-Ing. Michael Dienst (Author)
Publication Year
2014
Pages
22
Catalog Number
V267443
ISBN (eBook)
9783656582090
ISBN (Book)
9783656580447
Language
German
Tags
methoden bionik wellenwiderstandskoeffizienten ersatzfunktionen
Product Safety
GRIN Publishing GmbH
Quote paper
Dipl.-Ing. Michael Dienst (Author), 2014, Methoden in der Bionik, Munich, GRIN Verlag, https://www.hausarbeiten.de/document/267443
Look inside the ebook
  • Depending on your browser, you might see this message in place of the failed image.
  • https://cdn.openpublishing.com/images/brand/2/preview_popup_advertising.jpg
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
Excerpt from  22  pages
Hausarbeiten logo
  • Facebook
  • Instagram
  • TikTok
  • Shop
  • Tutorials
  • FAQ
  • Payment & Shipping
  • About us
  • Contact
  • Privacy
  • Terms
  • Imprint