Hausarbeiten logo
Shop
Shop
Tutorials
En De
Shop
Tutorials
  • How to find your topic
  • How to research effectively
  • How to structure an academic paper
  • How to cite correctly
  • How to format in Word
Trends
FAQ
Zur Shop-Startseite › Mathematik - Algebra

Group Theory for Bell-Ringers

An introduction to group theory for bell-ringing non-mathematicians

Titel: Group Theory for Bell-Ringers

Essay , 2011 , 8 Seiten , Note: 1,7

Autor:in: Dina Heß (Autor:in)

Mathematik - Algebra

Leseprobe & Details   Blick ins Buch
Zusammenfassung Leseprobe Details

The art of change-ringing has been practised, particularly in England, for over four hundred years but only recently mathematicians have taken an interest in the fact that this art can be described rather elegantly in mathematical terms. Surprisingly, the mathematical concept in question, group theory, is about a century younger than the applications of it in the ringing of changes as described thoroughly by Fabian Stedman in 1667.
In this essay groups will be introduced ‘as a tool for exploring’ the art of change-ringing and through bell-ringing introduce the mathematical concepts of sets, functions and groups.

Leseprobe


Inhaltsverzeichnis (Table of Contents)

  • Introduction
  • Bell-ringing terminology
  • Sets, functions, and operations
  • Permutations and transpositions
  • Groups and change-ringing

Zielsetzung und Themenschwerpunkte (Objectives and Key Themes)

This essay introduces the concept of group theory using the art of change-ringing as a practical example. It aims to explore the mathematical concepts of sets, functions, and groups through the specific context of bell-ringing. By demonstrating how change-ringing can be described using group theory, the essay aims to provide an accessible introduction to the mathematical concept.

  • The history and principles of change-ringing
  • The mathematical concepts of sets, functions, and operations
  • Permutations and transpositions in change-ringing
  • Group theory and its application to change-ringing
  • The relationship between mathematics and music

Zusammenfassung der Kapitel (Chapter Summaries)

The essay begins by introducing the history and terminology of change-ringing, explaining how bells are numbered and the different types of changes that can be rung. It then delves into the mathematical concepts of sets, functions, and operations, using practical examples to illustrate their application. Permutations and transpositions are discussed in the context of change-ringing, showing how these mathematical concepts are used to describe the order in which bells are rung. Finally, the essay concludes by demonstrating how change-ringing forms a group in the mathematical sense, exploring the properties and rules of groups.

Schlüsselwörter (Keywords)

The main keywords and focus topics of the text are: change-ringing, group theory, sets, functions, permutations, transpositions, mathematical concepts, musical patterns, and algebraic structures. This work examines the relationship between mathematical concepts and the practical art of change-ringing, illustrating how abstract mathematical ideas can be applied to understand real-world phenomena.

Ende der Leseprobe aus 8 Seiten  - nach oben

Details

Titel
Group Theory for Bell-Ringers
Untertitel
An introduction to group theory for bell-ringing non-mathematicians
Hochschule
University of Leeds  (School of Mathematics)
Veranstaltung
The Mathematics of Music
Note
1,7
Autor
Dina Heß (Autor:in)
Erscheinungsjahr
2011
Seiten
8
Katalognummer
V191260
ISBN (eBook)
9783656162353
Sprache
Englisch
Schlagworte
Glocken Wechselläuten Bell-Ringing Group Theory Gruppentheorie Musik Music Mathematik Essay Geschichte History Algebra Mathematics
Produktsicherheit
GRIN Publishing GmbH
Arbeit zitieren
Dina Heß (Autor:in), 2011, Group Theory for Bell-Ringers, München, GRIN Verlag, https://www.hausarbeiten.de/document/191260
Blick ins Buch
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
Leseprobe aus  8  Seiten
Hausarbeiten logo
  • Facebook
  • Instagram
  • TikTok
  • Shop
  • Tutorials
  • FAQ
  • Zahlung & Versand
  • Über uns
  • Contact
  • Datenschutz
  • AGB
  • Impressum