Hausarbeiten logo
Shop
Shop
Tutorials
En De
Shop
Tutorials
  • How to find your topic
  • How to research effectively
  • How to structure an academic paper
  • How to cite correctly
  • How to format in Word
Trends
FAQ
Zur Shop-Startseite › Soziologie - Sonstiges

Learning Energy. Promises, Hope and Hype in the Context of Machine Learning

Titel: Learning Energy. Promises, Hope and Hype in the Context of Machine Learning

Akademische Arbeit , 2020 , 11 Seiten , Note: 1,3

Autor:in: M.A. Stefan Raß (Autor:in)

Soziologie - Sonstiges

Leseprobe & Details   Blick ins Buch
Zusammenfassung Leseprobe Details

The concept of ‘hype’ is widely used in the business and public sphere and serves as a way to characterize increasing expectations of developments in technological fields. This paper seeks to analyze a ‘hype in the making’ by closing in on a case at the intersection of data science and energy. Following the previous body of literature qualitative as well as quantitative indicators are taken into account in order to assess the promises, hope and hype of the optimization of datacenters through machine learning. The analysis concludes that this techonogy is nearing its peak of expectation but shows favorable signs for activities after disappointment.

Leseprobe


Inhaltsverzeichnis (Table of Contents)

  • Abstract
  • Hyping Smart Energy
  • The Gartner Hype Cycle
  • Learning Energy
  • Cycle of Hype
  • Conclusion

Zielsetzung und Themenschwerpunkte (Objectives and Key Themes)

This paper examines the rising expectations surrounding machine learning in the realm of energy optimization, analyzing the promises, hopes, and hype surrounding this technology. It aims to assess the current state of this technology, using qualitative and quantitative indicators, and predict its future trajectory within the Gartner Hype Cycle.

  • The concept of "hype" in technology
  • The role of machine learning in energy systems
  • The Gartner Hype Cycle as a framework for understanding technological development
  • The potential impact of machine learning on energy efficiency and sustainability
  • The importance of considering both qualitative and quantitative data in technology analysis

Zusammenfassung der Kapitel (Chapter Summaries)

  • Abstract: Introduces the concept of "hype" in technology and outlines the paper's focus on analyzing machine learning's role in energy optimization.
  • Hyping Smart Energy: Discusses the rise of the information society and the role of artificial intelligence (AI) in shaping our interactions and decisions. Highlights the promises and potential of AI, while acknowledging the need to consider the uncertainties associated with technological development.
  • The Gartner Hype Cycle: Explains the Gartner Hype Cycle as a framework for understanding the life cycle of emerging technologies. Discusses the five phases of the Hype Cycle and the role of media attention in shaping expectations.
  • Learning Energy: Explores the concept of machine learning and its potential applications in energy systems. Explains the workings of neural networks and their ability to learn from data.

Schlüsselwörter (Keywords)

Machine learning, energy optimization, hype cycle, artificial intelligence, data science, technological development, Gartner Hype Cycle, neural networks, smart energy, information society.

Ende der Leseprobe aus 11 Seiten  - nach oben

Details

Titel
Learning Energy. Promises, Hope and Hype in the Context of Machine Learning
Hochschule
Universität Wien
Note
1,3
Autor
M.A. Stefan Raß (Autor:in)
Erscheinungsjahr
2020
Seiten
11
Katalognummer
V1001869
ISBN (eBook)
9783346377548
Sprache
Englisch
Schlagworte
Machine Learning Hype Hype-Cycle Gardner Artificial Intelligence Energy Science and Technology Studies STS
Produktsicherheit
GRIN Publishing GmbH
Arbeit zitieren
M.A. Stefan Raß (Autor:in), 2020, Learning Energy. Promises, Hope and Hype in the Context of Machine Learning, München, GRIN Verlag, https://www.hausarbeiten.de/document/1001869
Blick ins Buch
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • https://cdn.openpublishing.com/images/brand/2/preview_popup_advertising.jpg
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
  • Wenn Sie diese Meldung sehen, konnt das Bild nicht geladen und dargestellt werden.
Leseprobe aus  11  Seiten
Hausarbeiten logo
  • Facebook
  • Instagram
  • TikTok
  • Shop
  • Tutorials
  • FAQ
  • Zahlung & Versand
  • Über uns
  • Contact
  • Datenschutz
  • AGB
  • Impressum