Hausarbeiten logo
Shop
Shop
Tutorials
En De
Shop
Tutorials
  • How to find your topic
  • How to research effectively
  • How to structure an academic paper
  • How to cite correctly
  • How to format in Word
Trends
FAQ
Go to shop › Computer Science - Programming

A Genetic Programming Approach to Classification Problems

Title: A Genetic Programming Approach to  Classification Problems

Essay , 2013 , 10 Pages , Grade: A+

Autor:in: Hakan Uysal (Author)

Computer Science - Programming

Excerpt & Details   Look inside the ebook
Summary Excerpt Details

Genetic Programming is a biological evolution inspired technique for computer programs to solve problems automatically by evolving iteratively using a fitness function. The advantage of this type programming is that it only defines the basics.

As a result of this, it is a flexible solution for broad range of domains. Classification has been one of the most compelling problems in machine learning. In this paper, there is a comparison between genetic programming classifier and conventional classification algorithms like Naive Bayes, C4.5 decision tree, Random Forest, Support Vector Machines and k-Nearest Neighbour.

The experiment is done on several data sets with different sizes, feature sets and attribute properties. There is also an experiment on the time complexity of each classifier method.

Excerpt


Inhaltsverzeichnis (Table of Contents)

  • Introduction
    • Classification
    • Decision Trees
    • Naive-Bayes
    • Random Forest
    • Support Vector Machines
    • K Nearest Neighbours
    • Genetic Algorithm
    • Genetic Programming
  • Experiment
    • Data Sets
    • Tools and Frameworks
    • Compared Algorithms
    • Genetic Programming Classifier
    • Evaluation
  • Results
    • Accuracy
      • Adult Data Set

Zielsetzung und Themenschwerpunkte (Objectives and Key Themes)

This paper aims to compare the performance of various text classification algorithms, including a novel Genetic Programming (GP) classifier, on different datasets. The experiment investigates the impact of data size, feature types, and the effectiveness of GP in optimizing decision tree construction.

  • Text classification methods and their effectiveness in different scenarios
  • The influence of data size and feature types on classifier performance
  • Genetic Programming as a technique for optimizing decision tree construction
  • Comparative analysis of GP classifier against conventional methods like Naive Bayes, C4.5, Random Forest, SVM, and kNN
  • Evaluation metrics for classifier performance, including accuracy, precision, recall, and ROC area

Zusammenfassung der Kapitel (Chapter Summaries)

  • Introduction: This chapter provides an overview of text classification, its importance in data mining, and the common algorithms used. It introduces Genetic Programming (GP) as a method inspired by biological evolution to solve computer-related problems.
  • Experiment: This chapter details the experimental setup, including the datasets used, tools and frameworks employed, and the specific algorithms compared. It focuses on the GP classifier and its implementation for optimizing decision tree construction.
  • Results: This chapter presents the performance evaluation of the different classifiers on the chosen datasets. It analyzes the accuracy, precision, recall, and ROC area of each algorithm, highlighting the strengths and weaknesses of each method.

Schlüsselwörter (Keywords)

Text classification, data mining, Genetic Programming, decision tree, Naive Bayes, Random Forest, Support Vector Machines, kNN, accuracy, precision, recall, ROC area, UCI machine learning repository, Weka, Rapidminer, Orange.

Excerpt out of 10 pages  - scroll top

Details

Title
A Genetic Programming Approach to Classification Problems
College
University College Dublin
Course
Natural Computing
Grade
A+
Author
Hakan Uysal (Author)
Publication Year
2013
Pages
10
Catalog Number
V333781
ISBN (eBook)
9783656984368
ISBN (Book)
9783656984375
Language
English
Tags
classification genetic programming machine learning
Product Safety
GRIN Publishing GmbH
Quote paper
Hakan Uysal (Author), 2013, A Genetic Programming Approach to Classification Problems, Munich, GRIN Verlag, https://www.hausarbeiten.de/document/333781
Look inside the ebook
  • Depending on your browser, you might see this message in place of the failed image.
  • https://cdn.openpublishing.com/images/brand/2/preview_popup_advertising.jpg
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
  • Depending on your browser, you might see this message in place of the failed image.
Excerpt from  10  pages
Hausarbeiten logo
  • Facebook
  • Instagram
  • TikTok
  • Shop
  • Tutorials
  • FAQ
  • Payment & Shipping
  • About us
  • Contact
  • Privacy
  • Terms
  • Imprint